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Abstract

A numerical investigation was conducted to analyze the unsteady turbulent flowfield and heat transfer character-

istics in a channel with streamwise periodically mounted square bars arranged side-by-side to the approaching flow. The

transverse separation distance between the bars is varied, whereas the bar height to channel height (d=H ) are 0.152 and

0.2, the Reynolds number Re based on channel height is 2� 104 and the periodicity length is 2H. The channel walls are

subjected to a constant wall temperature. The k–e turbulence model was used in conjunction with the Reynolds-

averaged momentum and energy equations for the simulations. A finite volume technique is applied with a fine grid and

time resolution. Complex periodic vortex shedding develops in the channel due the interaction between the two

streamwise periodically mounted square bars. Results show that the unsteady flow behavior, pressure drop and heat

transfer are strongly dependent of the transverse separation distance of the bars. � 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

The arrangement of bluff bodies as turbulence pro-

moters in channels to periodically disrupt the flow is a

widely adopted technique for heat transfer enhance-

ment. The bluff bodies investigated have mainly con-

sisted of cylinders, flat plates and rectangular bars. The

optimal design requires however of a thorough under-

standing of the influence of the interaction between

unsteady vortex structures on heat transfer and flow

loss. Most previous studies were related to a single bluff

body immersed in freestreams, while there are less per-

tinent studies to flow passing square bars in confined

ducts with different arrangements.

Bosch and Rodi [1] presented the results of numerical

simulations of vortex shedding past a free-standing

square bar at Red ¼ 22000, obtained with different tur-

bulence models. Using wall functions, the standard k–e

model was compared with a modification suggested by

Kato and Launder [2] (hereafter Kato–Launder model).

The Kato–Launder model reduces the excessive pro-

duction of turbulent kinetic energy in the stagnation

region of the bar due to an unrealistic simulation of the

normal turbulent stresses in eddy-viscosity models, and

therefore the vortex shedding around the bar is stronger.

In terms of engineering parameters such as Strouhal

number, lift and drag coefficients, the predictions of the

Kato–Launder model and the standard k–e were close to
each other, however a detailed comparison in terms of

velocity profiles reveals Kato–Launder model to have

closer agreement with experiments.

Bosch et al. [3] reported experiments on the flow past

a square bar placed near a wall. Visualization studies

were carried out for various gap distances between bar

and wall. Over the range of the dimensionless gap dis-

tances c=d ¼ 0:35–0:5, the fraction of time with periodic

shedding motion increases from zero to one. Below this

range, the shedding motion is completely suppressed

and, above it, regular shedding occurs at all times. At

c=d ¼ 0:375 the bistable behavior of the flow is strong,

and here shedding occurs only at a relatively small
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percentage of the time and the flow is mostly non-peri-

odic, separated turbulent flow with a fairly long recir-

culation zone. Bosch and Rodi [4] reported numerical

simulations with the standard k–e turbulence model and

with the Kato–Launder model for this problem. The

simulated unsteady mean velocity fields with the Kato–

Launder model agree better with the experimental ob-

served mean flow motion [3].

Nakagawa et al. [5] conducted an experimental study

of heat transfer in a turbulent channel flow with a rect-

angular bar having various width-to-height ratios, b=h,
0.5, 1, 2 and 3, and for three Reynolds numbers. They

measured heat flux fluctuation with thin-film heat flux

sensors in three points of the channel wall, and they used

the smoke wire method for flow visualization. They con-

clude that the wall heat flux fluctuates in phase with the

shedding vortices from the bar. The position of the max-

imum wall heat flux moves downstream as the shedding

vortices travel through the channel, which results in ex-

tensive heat transfer enhancement.

Valencia [6] performed a numerical study to com-

pute the heat transfer and friction in a channel with a

mounted square bar of different sizes detached from the

channel wall. The Reynolds number Re based on

channel height ranges from 104 to 105, whereas the bar

height to channel height (d=H ) varies from 0.15 to 0.35.

The standard k–e turbulence model and the Kato–

Launder model were used for the simulations, and

compared thereafter. The experimental results of

Nakagawa et al. [5] of the local Nusselt numbers were

used for an evaluation of the performance of the nu-

merical method and the k–e turbulence models. The

comparison of time averaged local Nusselt numbers

distribution on the heated channel wall shows that the

simulated heat transfer coefficients agree well with the

experimental results except in the recirculation zone

behind the bar. Valencia compared the computed local

heat transfer coefficient between the standard k–e and

Kato–Launder model, the differences among the Nus-

selt numbers calculated with Kato–Launder model and

standard k–e were small, although the Kato–Launder

model intensified the Karman vortex sheets behind the

bar. Valencia has also found that the mean heat

transfer in a channel with one mounted square bar

increases in linear form with the bar size but the flow

losses increase in exponential form.

Nomenclature

A Van Driest’s constant (¼ 26)

Cd drag coefficient

Cf skin friction coefficient on channel wall

CL lift coefficient

Cl; c1; c2 k–e turbulence model constants

cp specific heat at constant pressure

d bar height

D drag

E constant in wall function (¼ 9).

f apparent friction factor

f0 apparent friction factor for the channel

without bar

F frequency

GT transverse spacing between bars’ centers

H channel height

hðx; tÞ local heat transfer coefficient

k turbulent kinetic energy

L periodicity length

Li lift

Nu local Nusselt number, hðx; tÞH=k
Nu0 mean Nusselt number for the channel

without bar

p pressure

P non-dimensional pressure, p=qU 2
0

PK production of turbulent kinetic energy

Pr Prandtl number t=a (¼ 0.71)

Prt turbulent Prandtl number (¼ 0.9)

qw wall heat flux

Re Reynolds number, U0H=m
St Strouhal number, Fd=U0

t/T phase of the periodic motion

TW channel wall temperature

U0 average velocity

U non-dimensional streamwise velocity

V non-dimensional transverse velocity

yþ wall coordinate

X non-dimensional Cartesian coordinate,

x=H
Y non-dimensional Cartesian coordinate,

y=H

Greek symbols

b mean pressure gradient

D difference

C diffusion coefficient

Ct turbulent diffusion coefficient

dij Kronecker delta

e dissipation rate of turbulent kinetic energy

j von Karman constant (¼ 0.4)

l molecular viscosity

lt turbulent viscosity

m kinematic viscosity

q density

rk ; re k–e turbulence model constants

s non-dimensional time, tU0=H
sw wall shear stress

h non-dimensional temperature, T=T0
hB non-dimensional bulk temperature
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The flow pattern for equal sized square bars in side-

by-side arrangement are categorized into three regimes:

single vortex street, bistable flow and two vortex streets.

For transverse spacing between the centers of the two

bars, G=d 6 1:4, where d is the width of the bar, a single

vortex street is formed as in the case of a single bluff

body. At the critical spacing of 1:46G=d 6 2:4, bistable
flow is found. The flow is biased to one side and inter-

mittently flips to the other side. The flow changes from

the biased pattern to two symmetric vortex streets at

G=d P 2:4 and either in-phase or anti-phase vortex

streets are found, Bosch [7].

Hayashi and Sakurai [8] performed experimental in-

vestigations on the wake interference of a row of normal

flat plates, consisting of two, three or four plates ar-

ranged side by side in a uniform flow with Reynolds

numbers of about 104. When the slit ratio of a row of flat

plates is less than about two, the flows through the slits

are biassed either upward or downward in a stable way

(except for a two-plate row with a slit ratio of 1.75 which

shows an unstable biassed flow), leading to multiple flow

patterns for a single slit-ratio value.

Zdravkovich [9] present a review of flow interference

between two circular cylinders in various arrangements

for different separation distances and Reynolds num-

bers. In side-by-side arrangement to the approaching

flow of two circular cylinders a interference in drag co-

efficient was observed for a separation distance smaller

than five cylinder diameters. The flow pattern show a

bistable nature. For a separation distance greater than

two, the process of the vortex formation of both cylin-

ders is exactly the same as that of the single cylinder.

When the separation distance becomes smaller, the bulk

flow between the two cylinders deflects, the deflection to

one side or the other can equally take place. Owing to

this phenomenon, the size of the vortex formation re-

gion and the vortex shedding frequency of two cylinders

are different from each other.

Alvarez et al. [10] numerically investigated the un-

steady turbulent flow of air and heat transfer in the

entrance region of a channel with two mounted square

bars in different arrangements with the standard k–e
turbulence model. The Reynolds number Re based on

channel height was 104, the channel length was 5H,

whereas the bar height to channel height (d=H ) was

0.152. They studied five arrangements with the bars

mounted in tandem along the channel axis and four

cases with the bars arranged side by side to the ap-

proaching flow. In the tandem arrangements the

downstream bar intensifies the detachment of vortices

and therefore the mean local heat transfer increases

strongly after the first bar. With the bars arranged side

by side to the flow anti-phase and in-phase unsteady

flow behavior were found as function of the transverse

separation distance of the bars. The heat transfer en-

hancement and pressure drop with the tandem ar-

rangements were considerably smaller than with the bars

arranged side by side.

Yao et al. [11] investigated local as well as average

heat transfer coefficients along a rectangular duct with

an array of cylinders staggered over opposite duct walls,

the hydrodynamic and thermal fully-developed states

were found being started from the fourth array of cyl-

inders, the averaged Nusselt number was achieved more

than three times larger to smooth duct flow.

Liou et al. [12] investigated the thermal performance

enhancement in a rectangular duct with an array of

square bars detached from the duct wall for different

bar clearance to height ratios (c=H ) and Reynolds

numbers by using holographic interferometry. The local

heat transfer deterioration, occurring behind the at-

tached bars, has been effectively removed by lifting the

bars from the wall with a clearance. The heat transfer

enhancement with c=H between 0.25 and 0.58 was

bigger than with attached bars. The mean Nusselt

number normalized by the Nusselt number for fully

developed turbulent flow in smooth channels was

comparable to that of the case with the duct flow with a

staggered array of cylinders at nearly the same c=H ¼
0:4 and pitch to bar-height ratio P=d ¼ 10 although the

Reynolds number and bar height were different, Yao

et al. [11].

Liou and Chen [13] presented one computational

and experimental study on turbulent fluid flow in a

channel with an array of square bars aligned along the

channel axis. They performed spatially periodic fluid

flow measurements with LDV. The Reynolds number

based on the channel hydraulic diameter, the pitch to

bar-height ratio, and the bar-height to channel-height

ratio were 2� 104, 10, and 0.13, respectively. The

numerical simulation was performed with a Reynolds

stress equations model with wall functions and the

calculated mean velocity field was similar to the mea-

sured with LDV.

Tsia and Hwang [14] conducted experiments to study

the heat transfer in a rectangular duct roughened by

arrays of alternate attached and detached square bars.

They varied the Reynolds number based on duct hy-

draulic diameter from 12 000 to 70 000, and the bar

pitch-to-height ratio from 10 to 30. The bar to channel-

height ratio and the ratio of the bar clearance to height

are fixed at 0.2 and 0.5, respectively. They showed that

the local Nusselt number along the axial distance of the

heated wall is not uniform. Starting with a local maxi-

mum at the immediate region of duct inlet, the local

Nusselt number decreases along the axial distance, and

then approaches a periodic fully developed distribution

after the third bar pairs from the duct inlet. They ob-

served that the improvement in the Nusselt number ratio

with the composite array is most prominent among the

three investigated arrays. The averaged Nusselt number

enhancement decreases strongly with the bar pitch,

A. Valencia, M. Cid / International Journal of Heat and Mass Transfer 45 (2002) 1661–1673 1663



therefore the bar pitch-to-height of 10 is recommended

for heat transfer augmentation.

The turbulent heat transfer in channels with an

array of attached bars has been considerably more

investigated as that of the channel with an array of

detached bars, because in advanced gas turbine blades

and vanes, arrays of attached bars as turbulence

promoters are cast onto two opposite walls of internal

cooling passages to enhance the heat transfer to the

cooling air. Han [15] presented local heat transfer

measurements in rectangular channels with two op-

posite ribbed walls. The local Nusselt number on the

ribbed wall is about two or three times higher than

the smooth channel values, depending on the geometry

and Reynolds number. The correlations for the fric-

tion factor and the Nusselt number can be used in the

design of turbine airfoil cooling passages.

The main objective of the present study is therefore

to provide detailed information on the effects of the

transverse separation distance between two square bars

periodically arranged side by side in a channel on the

turbulent flow and heat transfer by numerical simula-

tions with the Kato–Launder turbulence model.

2. Governing equations

The flow field in the channel is assumed to be un-

steady, two-dimensional, non-isothermal, incompress-

ible and turbulent, and the fluid is assumed to be

Newtonian with constant properties. Following the

concept of Reynolds decomposition an instantaneous

quantity can be separated into a mean value that con-

tains the periodic fluctuation and the stochastic turbu-

lent fluctuation. Replacing in the momentum equations

are obtained averaged equations that contain products

of turbulent velocity fluctuations. These Reynolds

stresses appearing in the momentum equations are

simulated by the statistical k–e turbulence model,

Launder and Spalding [16]. The continuity, averaged

momentum and energy equations together with the

equations for the turbulent kinetic energy k, and dissi-

pation rate e are used to describe the incompressible

unsteady separated flow and heat transfer in the channel

with periodically mounted square bars.

Continuity:

oðqujÞ
oxj

¼ 0: ð1Þ

Momentum:

q
oui
ot

þ oðpuiujÞ
oxj

¼ � op
oxi

þ o

oxj
ðl

�
þ ltÞ

oui
oxj

�
þ ouj

oxi

�
� 2

3
qkdi;j

�
ð2Þ

Energy:

q
oT
ot

þ oðqujT Þ
oxj

¼ o

oxj
ðC

�
þ CtÞ

oT
oxj

�
; ð3Þ

where the turbulent viscosity lt, the diffusion coefficient

C and the turbulent diffusion coefficient Ct are given by

lt ¼ qCl
k2

e
; C ¼ l

Pr
; Ct ¼

lt

Prt
: ð4Þ

The turbulent kinetic energy k and its dissipation rate e
are computed from the k–e turbulence model of Launder

and Spalding [16]:

q
ok
ot

þ oðqujkÞ
oxj

¼ o

oxj
l

��
þ lt

rk

�
ok
oxj

�
þ PK � qe; ð5Þ

q
oe
ot

þ oðqujeÞ
oxj

¼ o

oxj
l

��
þ lt

re

�
oe
oxj

�
þ c1

e
k
PK � c2q

e2

k
:

ð6Þ

The standard k–e model, though the oldest can give

surprisingly good results in complex flows, provided

these have predominantly small-scale turbulence struc-

tures and can be considered to be interpolates of basic

experiments from which the model constants have been

determined. The standard model has proved to be ro-

bust and with minor modifications, it has been capable

of predicting low Reynolds number turbulent flows, re-

circulation zones and relaminarization. An exception

was however seen in the prediction of bluff body flows,

where turbulence production in the stagnation region

was found to be very large. Consequently, the intensity

of vortex shedding was low. The Kato–Launder model

corrects the modeling of the production of the pressure–

strain correlation, therefore, the production of kinetic

energy in the stagnation region is smaller, the eddy vis-

cosity is also smaller compared to the standard k–e
model and hence the shed vortices are no longer weak.

The Kato–Launder model expresses PK, as a function

of the strain rate scale and the vorticity scale to eliminate

the excessive production of k:

PK ¼ lt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

oUi

oxj
þ oUj

oxi

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

oUi

oxj
� oUj

oxi

� �2
s

ð7Þ

In this work we use the Kato–Launder model for the

simulations. The standard constants are employed:

Cl ¼ 0:09, c1 ¼ 1:44, c2 ¼ 1:92, rk ¼ 1:0, re ¼ 1:3,
Prt ¼ 0:9. The governing equations introduced above

were solved numerically in non-dimensionalized form.

The velocities were non-dimensionalized with the aver-

aged velocity U0 at the inlet, all lengths were non-di-

mensionalized with the channel height H and the

pressure with qU 2
0 . The Reynolds number Re is defined

as qU0H=l. The Prandtl number m=a is, in this study,

0.71 for air. The turbulent kinetic energy and its dissi-

pation rate were non-dimensionalized with U 2
0 and with
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U 3
0 =H , respectively. Also the time and the temperature

were non-dimensionalized with H=U0 and with the ref-

erence temperature T0, respectively.

2.1. Near-wall treatment

Wall functions given by Launder and Spalding [16]

are employed to prescribe the boundary conditions

along the faces of the bars and the channel walls in the

computational domain. For the regions around the bars

the law of the wall is assumed to be valid for the flow,

and for the regions near the channel walls the law of the

wall is assumed to be valid for both the flow and tem-

perature fields. The wall functions are applied in terms

of diffusive wall fluxes. For the wall-tangential moment

these are the wall shear stress and the non-dimensional

wall distance yþ defined as

sw ¼
qupC1=4

l k1=2p j

lnðEyþÞ ; yþ ¼
qypC1=4

l k1=2p

l
: ð8Þ

If yþ 6 11:6 the wall shear stress is calculated with the

laminar equation. The subscript p refers to the grid

point adjacent to one wall. The production rate of k and

the averaged dissipation rates over the near-wall cell for

the k-equation as well as the value of e at the point p are

computed, respectively, from the following equation:

PK ¼ sw
up
yp

; e ¼
C3=4

l k3=2p

jyp
lnðEyþÞ; ep ¼

C3=4
l k3=2p

jyp
:

ð9Þ

For the temperature boundary condition, the heat flux

to the channel wall is derived from the thermal wall

function:

qw ¼
ðTw � TpÞqcPc1=4l k1=2p

PrtðlnðEyþÞ=j þ PÞ ð10Þ

where the empirical function P is specified as

P ¼ p=4
sinðp=4Þ

A
j

� �1=2 Pr
Prt

�
� 1

�
Prt
Pr

� �1=4

: ð11Þ

2.2. Geometry and boundary conditions

The fully developed air flow through a channel with

periodically mounted square bars arranged side by side

can be numerically modeling through a basic unit con-

taining a single pair of bars. Fig. 1 schematically shows

the computational domain. The streamwise periodicity

length of the domain is L ¼ 2H. The Reynolds number

based on the channel height is 2� 104 and the bar size

are 0.2H and 0.152H. We study square bars of height

0.2H to compare the computed average heat transfer

and pressure drop with the experimental results of Tsia

and Hwang [14], with this bar size is the the bar pitch-to-

height P=d ¼ 10. Alvarez et al. [10] have studied the

effects of transverse spacing between square bars in the

entrance region of the channel with a smaller bar size of

0.152H, for this reason we have varied the transverse

spacing between bars centers GT between 2d, 2.63d,

3.05d, 3.58d and 4d with this bar size of 0.152H. The

present paper study the fully developed case to deter-

mine the differences with the vortex generators placed in

the entrance region, and therefore to obtain more gen-

eral conclusions of the effects on heat transfer and

pressure drop. The case with one periodically mounted

square bar on the channel axis was also simulated as

reference.

The present numerical study will assume periodicity

of the solution over one basic unit and therefore the

actual computational geometry will be limited to this

basic unit. Implicit in this treatment is the assumption

that the flow is fully developed, both hydrodynamically

and thermally. To enable periodic boundary conditions,

the instantaneous non-dimensional pressure P is de-

composed into a mean part b that is assumed to vary

linearly in X, and a fluctuating part P 0 that vary in the

non-dimensional coordinates X and Y, Patankar et al.

[17]. Thus:

pðX ; Y ; sÞ ¼ �bðsÞX þ P 0ðX ; Y ; sÞ: ð12Þ

This mean gradient b is adjusted every time step to

satisfy the fixed mass flow condition. Periodic boundary

conditions are imposed on velocities, on the fluctuating

part of the pressure, the turbulent kinetic energy and

their dissipation rate.

The thermal boundary conditions are uniform

channel walls temperature Tw and the bars do not have

imposed temperature, at the channel walls

hw ¼ Tw=T0 ¼ 2 are imposed. The redevelopment of the

thermal boundary layer on interrupted surfaces has a

significant impact on heat transfer enhancement, if the

heating is applied to the vortex generators. The bars here

only generate transverse vortices and the heat transfer

surface is the same as in a plane channel without

mounted bars. For the periodic thermally developed

domain, the temperature difference

Fig. 1. Computational domain.
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hð0; Y ; sÞ � hw

hBð0Þ � hw

¼ hðL=H ; Y ; sÞ � hw

hBðL=H ; sÞ � hw

ð13Þ

can be considered to be periodic along the non-dimen-

sional X direction. The periodicity condition (13) en-

ables the solution domain for the temperature problem

limited to the streamwise length L=H . This periodic

thermally developed regime is a logical generalization of

the conventional thermally developed regime, Patankar

et al. [17]. The non-dimensional bulk temperature was

calculated using the non-dimensional velocity and the

non-dimensional temperature distribution with the

equation

hBðX ; sÞ ¼
R 1

0
jU jhdYR 1

0
jU jdY

: ð14Þ

Local Nusselt numbers on the channel walls were com-

puted with the following equation

NuðX ; sÞ ¼ hðx; tÞH
k

¼ qwH
kT0ðhw � hBðX ; sÞÞ

: ð15Þ

The flow losses were evaluated with the apparent friction

factor or mean pressure gradient defined as

f ¼ b ¼ DpH
1=2qU 2

0 2L
¼ 1

2
ðCf1 þ Cf2Þ þ CD1

d

2L
þ CD2

d

2L
;

ð16Þ

where Cf1 and Cf2 are the skin friction coefficients on the

channel walls, CD1 and CD2 are the drag coefficients of

the bars mounted in the channel. The apparent friction

factor f is calculated through Eq. (16) in each temporary

iteration. The skin friction coefficient, drag and lift co-

efficients are defined as:

Cf ¼
sW

1=2qU 2
0

; CD ¼ D
1=2qU 2

0 d
; CL ¼ Li

1=2qU 2
0 d

:

ð17Þ

2.3. Numerical solution technique

The differential equations introduced above were

solved numerically with an iterative finite-volume

method, details of which can be found in Patankar, [18].

The convection terms in the equations were approxi-

mated using a power-law scheme. The method uses

staggered grids and Cartesian velocity components,

handles the pressure–velocity coupling with the SIM-

PLEC algorithm in the form given by Van Doormaal

and Raithby [19] and solves the resulting system of

equations iteratively with a tridiagonal-matrix algo-

rithm. A first-order accurate fully implicit method was

used for time discretization in connection with a very

small time step Ds ¼ DtU0=H ¼ 0:0003 to capture

the complex unsteady flow. The time step satisfied the

Courant condition, C ¼ UmaxDs=DX ¼ 0:075, for the

condition we have considered Umax ¼ 2U0, In three cal-

culated cases approximately 8300 time step were needed

for one time period. A typical run of 2� 105 time steps

with 250� 125 grid points takes about 2� 104 min on a

personal computer with a Pentium III 500 MHz pro-

cessor. To determine mean values the program should be

run until a unsteady but periodic state is reached, and

then the values of all fields in each 1/16 of one period are

saved.

3. Results and discussion

To check grid independence in this work the case

with periodically mounted arrays of detached square

bars in the channel was simulated with the Kato–

Launder model for five grid sizes with Re ¼ 2� 104,

d=H ¼ 0:2, L=H ¼ 2, and GT=d ¼ 3. The calculation

with the different grids were performed with different

time step, in such a way that the Courant number of the

flow was C ¼ UmaxDs=DX ¼ 0:075. This case corre-

sponds to the experimental work of Tsia and Hwang

[14]. We compare local Nusselt number distribution

along the heated wall, mean Nusselt number, apparent

friction factor, streamwise mean and fluctuation of the

velocity at one axial station of the computational do-

main with the experimental results of [14].

Fig. 2 shows the instantaneous velocity vectors and

the contours of the turbulent kinetic energy on the

computational domain. The structures of the unsteady

turbulent flow show that vortex sheets are shed by the

bars, one can observe that vortex-shedding synchro-

nization occurs, in this case the binary vortex street

can be characterized as in phase vortex shedding. The

contours show that the generation of turbulent kinetic

energy is related to the shear in the flow arising from

the square bars. The generation of turbulent kinetic

energy is greater in regions where the velocity gradi-

ents are high, particularly in the wake of the bars. The

turbulent kinetic energy refers only to that contained

in the random velocity components, and the turbulent

kinetic energy grows in magnitude wherever the gra-

dient of the phase-averaged velocity is different from

zero. The turbulent flow around the periodically

mounted square bars placed side by side in the

transverse direction to the approaching flow is com-

pletely different to the case with only two mounted

square bars placed side by side in a channel, [10], in

that case the maxima of the turbulent kinetic energy

are in the front and around de square bars, because in

that case the shear layers formed due to separation at

the two leading corner points of the bars have the

highest vorticity magnitude.

Fig. 3 shows the time-averaged Nusselt number dis-

tributions on the heated channel wall for the five grid
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sizes and the experimental distribution of [14]. The nu-

merical distributions with the fine grids show a local

maximum at the position of the square bars, and a

second maximum caused by the periodically shedding

vortices from the bars. However the experimental dis-

tribution shows a monotonous increment, due probably

to uncertainties in the measure of the local heat transfer,

the conductive heat losses during the experiment can be

9%. The differences among local Nusselt numbers cal-

culated with the two finer grid sizes are small, for this

reason we estimate that the grid size with 250� 125

control volumes is fine enough to produce grid-inde-

pendent temperature field.

The streamwise mean and fluctuation of the velocity

at the axial station of the computational domain

X ¼ 0:3, calculated with the grid of 250� 125 control

volumes show good agreement with the experimental

distributions especially in the channel axis. In that

position the numerical values are u=U0 ¼ 1:55 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0Þ2=U0

q
¼ 0:21, the experimental values are u=U0 ¼

1:55 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0Þ2=U0

q
¼ 0:19, respectively.

Values of integral parameters as the mean skin fric-

tion coefficient, mean drag coefficient, mean lift coeffi-

cients, fluctuation of lift coefficient, mean Nusselt

number on the heated channel wall, apparent friction

factor, and Strouhal number of the flow are compared

for the five different grids in Table 1. The differences

among the mean drag coefficients of the two bars, and

the mean skin friction coefficients on both channel walls

are smaller than 1% and therefore Table 1 shows only

one of them. The unsteady turbulent flow in this case is

characterized by only one frequency and therefore the

time dependence of integral parameters have the form of

simple periodic functions. The experimental mean Nus-

selt number and apparent friction factor are Nu ¼ 122

and f ¼ 0:3, these values can be compared with the

numerical in Table 1.

One canobserve thatwith the grid of 250� 125 control

volumes the differences in the skin friction coefficients and

mean Nusselt numbers compared with the grid of

280� 140 control volumes are smaller than 4%.Therefore

the grid with 250� 125 control volumes will be used in

this work for the simulation of the unsteady turbulent

Fig. 2. (a) Instantaneous maps of velocity vectors and (b) contours of turbulent kinetic energy for d=H ¼ 0:2 and GT=d ¼ 3:0.

Fig. 3. Local Nusselt number distributions on the heated chan-

nel wall for different grid sizes for d=H ¼ 0:2 and GT=d ¼ 3:0.
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flow around bar arrangements in the channel. The di-

mensionless, sublayer-scaled wall distance of the first grid

point, yþp , varies with the distance along the channel walls

and around the bars for different used mesh size, in this

work the laminar case yþp < 11:6, and the turbulent case

yþp P 11:6, has been programmed in the wall function

formulation, because in the cases with fine grid sizes the

laminar case were found in parts of the walls.

An interesting finding of this case simulated with five

different grid sizes is that vortex-shedding synchroniza-

tion with in phase vortex shedding were found with all

the calculated grids. We have also varied the time step

Fig. 4. Instantaneous maps of velocity vectors: (a) GT=d ¼ 2:0, (b) GT=d ¼ 2:63, (c) GT=d ¼ 3:05, (d) GT=d ¼ 3:58, (e) GT=d ¼ 4:0.

Table 1

Averaged values for different grid sizes, Re ¼ 2� 104, GT=d ¼ 3, d=H ¼ 0:20, L=H ¼ 2

Grid Cf1 Cd1 CL1 CL2 DCL Nu1 f St

128� 64 0.01250 2.79 0.15 )0.10 0.535 111.57 0.29 0.222

160� 80 0.01298 2.82 0.11 )0.05 0.670 121.74 0.29 0.224

200� 100 0.01353 2.89 0.11 )0.06 0.675 133.60 0.30 0.226

250� 125 0.01508 2.98 0.10 )0.03 0.780 148.90 0.31 0.228

280� 140 0.01533 2.96 0.12 )0.07 0.715 154.96 0.31 0.228
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and the initial condition for the simulations, and the

unsteady turbulent flow structure around the square

bars did not change.

The structure of the unsteady turbulent flow in the

channel with two periodically mounted square bars ar-

ranged side by side will be illustrated through the use of

computed instantaneous velocity vectors and contours

of the turbulent kinetic energy. Figs. 4 and 5 show in-

stantaneous maps of fluctuating velocity vector and

contours of turbulent kinetic energy for GT=d ¼ 2, 2.63,

3.05, 3.58 and 4 with a bar size of d=H ¼ 0:152, re-

spectively. With transverse separation distances between

the bars of GT=d ¼ 3:05 and 4, Figs. 4(c), (e) and 5(c),

(e), vortex-shedding synchronization occurs. For

GT=d ¼ 3:05 the binary vortex street can be character-

ized as in anti-phase vortex shedding and for GT=d ¼ 4

in phase vortex shedding is found. These two cases are

characterized by only one frequency present in the flow.

The contours of turbulent kinetic energy show that these

two flows can be described approximately as symmetri-

cal and anti-symmetrical, respectively.

More complex structures of the unsteady turbulent

flow in the channel were found for GT=d ¼ 2, 2.63, and

3.58. Figs. 4(a), (b) and (d) show instantaneous velocity

vectors and Figs. 5(a), (b) and (d) show the corre-

sponding contours of turbulent kinetic energy. In these

cases vortex shedding from the bars are not synchro-

nized and several frequencies are present in the flow.

Fig. 5 shows that the intensity of the Karman vortex

sheets behind the bars are not the same. These cases are

characterized by the existence of a low frequency mod-

ulation of the flow. In these cases a complex interaction

exists between the bars due to the presence of the

channel walls and the transverse separation distances of

the bars in the generation of the unsteady vortices. This

causes a complex time dependence of the integral pa-

rameters in those three cases.

Fig. 6 shows the time variation of the drag and lift

coefficients for the bar 1 in the case with GT=d ¼ 3:58 for
10 dominant periods. The time dependence of the coef-

ficients show the low frequency modulation of the un-

steady turbulent flow around the bar. A comparison of

the time dependence of the mean drag coefficients for

different transverse separation distances in 7/8 of each

period of the unsteady flow around the square bars

shows Fig. 7. In the cases with vortex-shedding syn-

chronization, Figs. 7(c), (e), the different temporary de-

pendence between the cases with GT=d ¼ 3:05 and 4 are

due the anti-phase vortex shedding and in phase vortex

shedding, respectively. Fig. 7(c) shows that mean values

Fig. 5. Instantaneous contours of turbulent kinetic energy: (a) GT=d ¼ 2:0, (b) GT=d ¼ 2:63, (c) GT=d ¼ 3:05, (d) GT=d ¼ 3:58,
(e) GT=d ¼ 4:0.
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of the drag coefficients are not equal and therefore this

flow can be only approximately seen as symmetrical.

The influences of low frequency modulation of the

flow on the mean drag coefficients for the transverse bar

separation distances of GT=d ¼ 2; 2:63 and 3.58 show

Figs. 7(a), (b) and (d). Fig. 7(a) shows a smaller drag

coefficient for the bar 1 at the beginning of the period,

that corresponds at the time shown in the Fig. 4(a), at

this time only the bar 2 shed vortices and therefore is the

pressure drop around this bar bigger. The time depen-

dence of the drag coefficients in these three cases for the

two bars are different, and the power spectra for these

cases show a dominant low frequency besides the higher

frequencies characteristic of synchronized vortex-shed-

ding.

Fig. 8 shows instantaneous local Nusselt number on

the channel wall in one period for the cases GT=d ¼ 3:58
and GT=d ¼ 4:0. In the case without vortex-shedding

synchronization, Fig. 8(a), the time variations of the

local Nusselt number are greater than in the case with

vortex-shedding synchronization, Fig. 8(b). The effects

of the low frequency modulation of the flow on the in-

Fig. 7. Time dependence of the mean drag coefficients in one period: (a) GT=d ¼ 2:0, (b) GT=d ¼ 2:63, (c) GT=d ¼ 3:05,
(d) GT=d ¼ 3:58, (e) GT=d ¼ 4:0.

Fig. 6. Time variation of the drag and lift coefficients for the

bar 1 in the case GT=d ¼ 3:58.
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stantaneous heat transfer on the channel wall are clearly

shown in the Fig. 8(a).

The time-averaged local skin friction coefficient dis-

tributions on the channel wall are shown in Fig. 9 for the

five studied transverse separation distances GT=d. The
local skin friction coefficients take a maximum at the

inserted position of the square bars. The local skin co-

efficients before and after the position of the bars de-

crease with bigger transverse separation distances of the

bars, because more fluid flow between the bars with

bigger GT=d.
Fig. 10 compares time-averaged Nusselt number

distributions for the five cases with periodically mounted

bars arranged side by side. The local Nusselt numbers

take a local maximum at the inserted position of the

bars, and other smaller local maxima. The first local

maximum of the Nusselt numbers results from flow ac-

celeration due to the blockage effect of the two mounted

bars, while the other local maxima are caused by the

periodically shedding vortices from the bars. The dis-

tribution of local Nusselt numbers only in the cases with

vortex-shedding synchronization are similar and char-

acterized by two local maxima.

The effects of the bar separation distance GT=d on

mean values of the integral parameters of the unsteady

turbulent flow and heat transfer on the channel walls are

shown in Table 2. The frequency of the streamwise and

transverse velocities located at 2d behind of the bars,

and the frequency of the drag and lift signals were

processed by means of the Fast Fourier Transform

(FFT). The Strouhal number were determinated with

the dominant frequency present in the signals.

We have also computed the case with one periodi-

cally mounted rectangular bar in the channel, d=H ¼ 0:3
and GT=d ¼ 1, for comparison and the mean values are

also shown in Table 2. The mean drag coefficients for the

two bars for in-phase vortex shedding ðGT=d ¼ 4Þ and

for the anti-phase case (GT=d ¼ 3:05) are not equal. The
differences can be explained by the temporal out of

phase among the vortices shedding from the bars in both

Fig. 9. Time-averaged distributions of local skin friction coef-

ficient.

Fig. 10. Local Nusselt number distributions on the channel

wall.

Fig. 8. Instantaneous local Nusselt number on the channel wall in one period: (a) GT=d ¼ 3:58, (b) GT=d ¼ 4:0.
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cases, this means that the vortex-shedding synchroniza-

tion in these cases is not exact. Figs. 7(c) and (e) show

the temporal displacement of the drag coefficients for the

two bars in both cases.

In all the arrangements the mean lift coefficients of

the bars are not zero, and the bars have a small force of

repulsion, to exception of the case with GT=d ¼ 4 in

that both lift coefficients are negative. The unsteady

flow accelerates in the gap between the bars and

therefore the bars have a repulsive force in the trans-

verse direction.

In the arrangements with vortex-shedding synchro-

nization the frequency of the unsteady flow are almost

four times that in the cases without synchronization of

the periodic unsteady flow. In the arrangement with one

periodically mounted rectangular bar are the mean drag

coefficient, apparent friction factor and Nusselt number

bigger than with two square bars, because the shedding

vortices are bigger and therefore their influences in flow

and heat transfer parameters.

To evaluate the heat transfer enhancement and

pressure drop increase in the channel with vortex gen-

erators the mean Nusselt number and the apparent

friction factor should be compared with the values for

fully developed turbulent flow in a channel. The Nusselt

number and apparent friction factor in a channel with-

out mounted vortex generators are Nu0 ¼ 48 and

f0 ¼ 0:006, respectively. Fig. 11 shows the mean Nusselt

number and apparent friction factor increase for the

different cases. The most favorable among the cases with

two mounted square bars with d=H ¼ 0:152 is for

GT=d ¼ 4, so the mean heat transfer enhancement is

Nu=Nu0 ¼ 2:71, this heat transfer enhancement is asso-

ciated with an increase on the apparent friction factor of

f =f0 ¼ 31:2. With one periodically mounted rectangular

bar we have Nu=Nu0 ¼ 3:24 and f =f0 ¼ 43:2, and with

the arrangement with two bigger square bars of

d=H ¼ 0:2 and GT=d ¼ 3 we have Nu=Nu0 ¼ 3:1 and

f =f0 ¼ 51:7. In comparing the performance of the rib-

bed and smooth heat transfer passages, it is necessary to

specify the constraints under which the comparison is

made. In this work, the comparison of the heat transfer

performance for the constant airflow rate constraint has

already made in Fig. 11 among the six cases.

4. Conclusions

The unsteady turbulent flow of air and heat transfer

in a channel with two periodically mounted square bars

arranged side by side to the approaching flow were nu-

merically simulated with a modified version of the

standard k–e turbulence model. The effects of the

transverse separation distance of the bars on the flow

behavior and heat transfer were studied for a constant

Reynolds number and periodicity length of the compu-

tational domain. For three values of GT=d were found

complex structures of the unsteady turbulent flow with

several frequencies present. The mean enhancements of

heat transfer were considerably smaller than the in-

creases of the pressure drop in all arrangements.

Acknowledgements

The financial support received of CONICYT CHILE

under grant No. 1980695 is gratefully acknowledged.

Fig. 11. Mean Nusselt number enhancement and friction factor

increase for different GT=d.

Table 2

Averaged values for different transverse spacing, Re ¼ 2� 104, d=H ¼ 0:152, L=H ¼ 2

GT=d Cf1 Cf2 Cd1 Cd2 CL1 CL2 f Nu1 Nu2 St

1a 0.02073 0.02074 3.22 – 0. – 0.259 155.73 155.68 0.167

2 0.02157 0.02136 2.18 2.16 )0.36 0.24 0.186 114.65 115.06 0.056

2.63 0.01971 0.01952 2.60 2.61 )0.13 0.11 0.218 121.96 122.51 0.061

3.05 0.01652 0.01627 2.37 2.56 )0.02 0.07 0.204 107.88 108.39 0.23

3.58 0.01484 0.01506 2.53 2.54 )0.03 0.12 0.207 119.20 119.72 0.061

4 0.01298 0.01295 2.35 2.23 )0.03 )0.03 0.187 130.08 129.68 0.19

aCase with d=H ¼ 0:3.
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